Cloning and expression of the human myeloid cell nuclear differentiation antigen: regulation by interferon alpha.

Autor: Briggs JA; Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232., Burrus GR, Stickney BD, Briggs RC
Jazyk: angličtina
Zdroj: Journal of cellular biochemistry [J Cell Biochem] 1992 May; Vol. 49 (1), pp. 82-92.
DOI: 10.1002/jcb.240490114
Abstrakt: The human myeloid cell nuclear differentiation antigen (MNDA) is a protein of 406 amino acids that is expressed specifically in granulocytes, monocytes and earlier stage cells of these lineages. Degenerate oligonucleotides that could encode regions of MNDA amino acid sequence were used to amplify the MNDA cDNA sequence using the polymerase chain reaction. The amplified cDNA product was sequenced to confirm that it encoded the MNDA protein. It was then used as a probe to isolate five clones from a human bone marrow lambda gt10 cDNA library. A clone containing a 1,672 base pair cDNA insert was sequenced and found to encode the entire MNDA open reading frame, as well as 5' and 3' untranslated regions. The primary structure of the MNDA contains extensive regions of sequence similarity with the protein products of the interferon-inducible genes: 204 and interferon regulatory factor 2. In addition, a 12-base sequence matching the interferon-stimulated response element consensus sequence [GAAAN(N)GAAA] is located in the 5' untranslated region of the MNDA cDNA. The 1.8 kb MNDA mRNA was detected only in cells that express the antigen and the level of MNDA mRNA was elevated in cells treated with either recombinant or natural interferon alpha. The MNDA mRNA was not induced by interferon alpha in cells that do not exhibit a constitutive level of the MNDA mRNA. The MNDA contains sequence motifs found in gene regulatory proteins. The expression and the primary structure of the MNDA indicates that it plays a role in the granulocyte/monocyte cell-specific response to interferon.
Databáze: MEDLINE