Autor: |
Leeuw NJ; UNESCO MIRCEN: Industrial Biotechnology, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, 339 Bloemfontein, South Africa., Kock JL, Pohl CH, Bareetseng AS, Sebolai OM, Joseph M, Strauss CJ, Botes PJ, van Wyk PW, Nigam S |
Jazyk: |
angličtina |
Zdroj: |
Antonie van Leeuwenhoek [Antonie Van Leeuwenhoek] 2006 Jan; Vol. 89 (1), pp. 91-7. Date of Electronic Publication: 2005 Dec 03. |
DOI: |
10.1007/s10482-005-9012-3 |
Abstrakt: |
Eremothecium coryli is known to produce intriguing spindle-shaped ascospores with long and thin whip-like appendages. Here, ultra structural studies using scanning electron microscopy, indicate that these appendages serve to coil around themselves and around ascospores causing spore aggregation. Furthermore, using immunofluorescence confocal laser scanning microscopy it was found that hydrophobic 3-hydroxy oxylipins cover the surfaces of these ascospores. Using gas chromatography-mass spectrometry, only the oxylipin 3-hydroxy 9:1 (a monounsaturated fatty acid containing a hydroxyl group on carbon 3) could be identified. Sequential digital imaging suggests that oxylipin-coated spindle-shaped ascospores are released from enclosed asci probably by protruding through an already disintegrating ascus wall. |
Databáze: |
MEDLINE |
Externí odkaz: |
|