Effect of temperature on the adsorption of water in porous carbons.

Autor: Striolo A; Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604, USA. astriolo@ou.edu, Gubbins KE, Gruszkiewicz MS, Cole DR, Simonson JM, Chialvo AA, Cummings PT, Burchell TD, More KL
Jazyk: angličtina
Zdroj: Langmuir : the ACS journal of surfaces and colloids [Langmuir] 2005 Oct 11; Vol. 21 (21), pp. 9457-67.
DOI: 10.1021/la051120t
Abstrakt: We report experimental and simulation studies to investigate the effect of temperature on the adsorption isotherms for water in carbons. Adsorption isotherms are measured by a gravimetric technique in carbon-fiber monoliths at 378 and 423 K and studied by molecular simulation in ideal carbon pores in the temperature range 298-600 K. Experimental adsorption isotherms show a gradual water uptake, as the pressure increases, and narrow adsorption-desorption hysteresis loops. In contrast, simulated adsorption isotherms at room temperature are characterized by negligible uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. As the temperature increases, the relative pressure at which pore filling occurs increases and the size of the hysteresis loop decreases. Experimental adsorption-desorption hysteresis loops are narrower than those from simulation. Discrepancies between simulation and experimental results are attributed to heterogeneities in chemical composition, pore connectivity, and nonuniform pore-size distribution, which are not accounted for in the simulation model. The hysteresis phase diagram for confined water is obtained by recording the pressure-density conditions that bound the simulated hysteresis loop at each temperature. We find that the hysteresis critical temperature, i.e., the lowest temperature at which no hysteresis is detected, can be hundreds of degrees lower than the vapor-liquid critical temperature for bulk model water. The properties of confined water are discussed with the aid of simulation snapshots and by analyzing the structure of the confined fluid.
Databáze: MEDLINE