Autor: |
Dai Y; Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, Illinois 60064-6100, USA. yuija.dai@abbott.com, Guo Y, Frey RR, Ji Z, Curtin ML, Ahmed AA, Albert DH, Arnold L, Arries SS, Barlozzari T, Bauch JL, Bouska JJ, Bousquet PF, Cunha GA, Glaser KB, Guo J, Li J, Marcotte PA, Marsh KC, Moskey MD, Pease LJ, Stewart KD, Stoll VS, Tapang P, Wishart N, Davidsen SK, Michaelides MR |
Jazyk: |
angličtina |
Zdroj: |
Journal of medicinal chemistry [J Med Chem] 2005 Sep 22; Vol. 48 (19), pp. 6066-83. |
DOI: |
10.1021/jm050458h |
Abstrakt: |
A series of novel thienopyrimidine-based receptor tyrosine kinase inhibitors has been discovered. Investigation of structure-activity relationships at the 5- and 6-positions of the thienopyrimidine nucleus led to a series of N,N'-diaryl ureas that potently inhibit all of the vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor tyrosine kinases. A kinase insert domain-containing receptor (KDR) homology model suggests that these compounds bind to the "inactive conformation" of the enzyme with the urea portion extending into the back hydrophobic pocket adjacent to the adenosine 5'-triphosphate (ATP) binding site. A number of compounds have been identified as displaying excellent in vivo potency. In particular, compounds 28 and 76 possess favorable pharmacokinetic (PK) profiles and demonstrate potent antitumor efficacy against the HT1080 human fibrosarcoma xenograft tumor growth model (tumor growth inhibition (TGI) = 75% at 25 mg/kg.day, per os (po)). |
Databáze: |
MEDLINE |
Externí odkaz: |
|