Dynamics of a novel pathogen in an avian host: Mycoplasmal conjunctivitis in house finches.

Autor: Dhondt AA; Cornell University, Laboratory of Ornithology, Ithaca, NY 14850, USA. aad4@cornell.edu, Altizer S, Cooch EG, Davis AK, Dobson A, Driscoll MJ, Hartup BK, Hawley DM, Hochachka WM, Hosseini PR, Jennelle CS, Kollias GV, Ley DH, Swarthout EC, Sydenstricker KV
Jazyk: angličtina
Zdroj: Acta tropica [Acta Trop] 2005 Apr; Vol. 94 (1), pp. 77-93.
DOI: 10.1016/j.actatropica.2005.01.009
Abstrakt: In early 1994, a novel strain of Mycoplasma gallisepticum (MG)--a poultry pathogen with a world-wide distribution--emerged in wild house finches and within 3 years had reached epidemic proportions across their eastern North American range. The ensuing epizootic resulted in a rapid decline of the host population coupled with considerable seasonal fluctuations in prevalence. To understand the dynamics of this disease system, a multi-disciplinary team composed of biologists, veterinarians, microbiologists and mathematical modelers set forth to determine factors driving and influenced by this host-pathogen system. On a broad geographic scale, volunteer observers ("citizen scientists") collected and reported data used for calculating both host abundance and disease prevalence. The scale at which this monitoring initiative was conducted is unprecedented and it has been an invaluable source of data for researchers at the Cornell Laboratory of Ornithology to track the spread and magnitude of disease both spatially and temporally. At a finer scale, localized and intensive field studies provided data used to quantify the effects of disease on host demographic parameters via capture-mark-recapture modeling, effects of host behavior on disease and vice-versa, and the biological and genetic profiles of birds with known phenotypic characteristics. To balance the field-based component of the study, experiments were conducted with finches held in captivity to describe and quantify the effects of experimental infections on hosts in both individual and social settings. The confluence of these various elements of the investigation provided the foundation for construction of a general compartmentalized epidemiological model of the dynamics of the house finch-MG system. This paper serves several purposes including (i) a basic review of the pathogen, host, and epidemic cycle; (ii) an explanation of our research strategy; (iii) a basic review of results from the diverse multi-disciplinary approaches employed; and (iv) pertinent questions relevant to this and other wildlife disease studies that require further investigation.
Databáze: MEDLINE