Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway.

Autor: Cui XL; Dept. of Pharmacology and Physiology, MSB H621, New Jersey Medical School, 185 S. Orange Ave., Newark, NJ 07103, USA., Schlesier AM, Fisher EL, Cerqueira C, Ferraris RP
Jazyk: angličtina
Zdroj: American journal of physiology. Gastrointestinal and liver physiology [Am J Physiol Gastrointest Liver Physiol] 2005 Jun; Vol. 288 (6), pp. G1310-20. Date of Electronic Publication: 2005 Feb 03.
DOI: 10.1152/ajpgi.00550.2004
Abstrakt: Expression of rat glucose transporter-5 (GLUT5) is tightly regulated during development. Expression and activity are low throughout the suckling and weaning stages, but perfusion of the small intestinal lumen with fructose solutions during weaning precociously enhances GLUT5 activity and expression. Little is known, however, about the signal transduction pathways involved in the substrate-induced precocious GLUT5 development. We found that wortmannin and LY-294002, inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) specifically inhibited the increase in fructose uptake rate and brush-border GLUT5 protein abundance but not GLUT5 mRNA abundance. Perfusion of EGF, an activator of PI3-kinase, also resulted in a marked wortmannin-inhibitable increase in fructose uptake. Perfusion of fructose for 4 h increased cytosolic immunostaining of phosphatidylinositol-3,4,5-triphosphate (PIP(3)), the primary product of PI3-kinase, mainly in the mid- to upper-villus regions in which the brush-border membrane also stained strongly with GLUT5. Perfusion of glucose for 4 h had little effect on fructose or glucose uptake and PIP(3) or GLUT5 staining. SH-5, an Akt inhibitor, prevented the increase in fructose uptake and GLUT5 protein induced by fructose solutions, and had no effect on glucose uptake. The PI3-kinase/Akt signaling pathway may be involved in the synthesis and/or recruitment to the brush border of GLUT5 transporters by luminal fructose in the small intestine of weaning rats. Increases in fructose transport during the critical weaning period when rats are shifting to a new diet may be modulated by several signaling pathways whose cross talk during development still needs to be elucidated.
Databáze: MEDLINE