Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice.

Autor: Pétrilli V; International Agency for Research on Cancer, 69008 Lyons, France., Herceg Z, Hassa PO, Patel NS, Di Paola R, Cortes U, Dugo L, Filipe HM, Thiemermann C, Hottiger MO, Cuzzocrea S, Wang ZQ
Jazyk: angličtina
Zdroj: The Journal of clinical investigation [J Clin Invest] 2004 Oct; Vol. 114 (8), pp. 1072-81.
DOI: 10.1172/JCI21854
Abstrakt: Poly(ADP-ribosyl)ation is rapidly formed in cells following DNA damage and is regulated by poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is known to be involved in various cellular processes, such as DNA repair, genomic stability, transcription, and cell death. During apoptosis, PARP-1 is cleaved by caspases to generate 89-kDa and 24-kDa fragments, a hallmark of apoptosis. This cleavage is thought to be a regulatory event for cellular death. In order to understand the biological significance of PARP-1 cleavage, we generated a PARP-1 knockin (PARP-1(KI/KI)) mouse model, in which the caspase cleavage site of PARP-1, DEVD(214), was mutated to render the protein resistant to caspases during apoptosis. While PARP-1(KI/KI) mice developed normally, they were highly resistant to endotoxic shock and to intestinal and renal ischemia-reperfusions, which were associated with reduced inflammatory responses in the target tissues and cells due to the compromised production of specific inflammatory mediators. Despite normal binding of NF-kappaB to DNA, NF-kappaB-mediated transcription activity was impaired in the presence of caspase-resistant PARP-1. This study provides a novel insight into the function of PARP-1 in inflammation and ischemia-related pathophysiologies.
Databáze: MEDLINE