Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating.

Autor: Briggs EP; Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK., Walpole AR, Wilshaw PR, Karlsson M, Pålsgård E
Jazyk: angličtina
Zdroj: Journal of materials science. Materials in medicine [J Mater Sci Mater Med] 2004 Sep; Vol. 15 (9), pp. 1021-9.
DOI: 10.1023/B:JMSM.0000042688.33507.12
Abstrakt: Thin, nano-porous, highly adherent layers of anodised aluminium formed on the surface of titanium alloys are being developed as coatings for metallic surgical implants. The layers are formed by anodisation of a 1-5 microm thick layer of aluminium which has been deposited on substrate material by electron beam evaporation. The surface ceramic layer so produced is alumina with 6-8 wt % phosphate ions and contains approximately 5 x 10(8) cm(-2) pores with a approximately 160 nm average diameter, running perpendicular to the surface. Mechanical testing showed the coatings' shear and tensile strength to be at least 20 and 10 MPa, respectively. Initial cell/material studies show promising cellular response to the nano-porous alumina. A normal osteoblastic growth pattern with cell number increasing from day 1 to 21 was shown, with slightly higher proliferative activity on the nano-porous alumina compared to the Thermanox control. Scanning electron microscopy (SEM) examination of the cells on the porous alumina membrane showed normal osteoblast morphology. Flattened cells with filopodia attaching to the pores and good coverage were also observed. In addition, the pore structure produced in these ceramic coatings is expected to be suitable for loading with bioactive material to enhance further their biological properties.
Databáze: MEDLINE