Chronic inorganic arsenic exposure induces hepatic global and individual gene hypomethylation: implications for arsenic hepatocarcinogenesis.

Autor: Chen H; Laboratory of Comparative Carcinogenesis, National Cancer Institute at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA., Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP
Jazyk: angličtina
Zdroj: Carcinogenesis [Carcinogenesis] 2004 Sep; Vol. 25 (9), pp. 1779-86. Date of Electronic Publication: 2004 Apr 08.
DOI: 10.1093/carcin/bgh161
Abstrakt: Inorganic arsenic is a human carcinogen that can target the liver, but its carcinogenic mechanisms are still unknown. Global DNA hypomethylation occurs during arsenic-induced malignant transformation in rodent liver cells. DNA hypomethylation can increase gene expression, particularly when occurring in the promoter region CpG sites, and may be a non-genotoxic mechanism of carcinogenesis. Thus, in the present study liver samples of male mice exposed to 0 (control) or 45 p.p.m. arsenic (as NaAsO(2)) in the drinking water for 48 weeks were analyzed for gene expression and DNA methylation. Chronic arsenic exposure caused hepatic steatosis, a lesion also linked to consumption of methyl-deficient diets. Microarray analysis of liver samples showed arsenic induced aberrant gene expression including steroid-related genes, cytokines, apoptosis-related genes and cell cycle-related genes. In particular, the expression of the estrogen receptor-alpha (ER-alpha), and cyclin D1 genes were markedly increased. RT-PCR and immunohistochemistry confirmed arsenic-induced increases in hepatic ER-alpha and cyclin D1 transcription and translation products, respectively. Arsenic induced hepatic global DNA hypomethylation, as evidenced by 5-methylcytosine content of DNA and by the methyl acceptance assay. Arsenic also markedly reduced the methylation within the ER-alpha gene promoter region, as assessed by methylation-specific PCR, and this reduction was statistically significant in 8 of 13 CpG sites within the promoter region. Overall, in controls 28.3% of the ER-alpha promoter region CpG sites were methylated, but only 2.9% were methylated after chronic arsenic exposure. Thus, long-term exposure of mice to arsenic in the drinking water can induce aberrant gene expression, global DNA hypomethylation, and the hypomethylation of the ER-alpha gene promoter, all of which could potentially contribute to arsenic hepatocarcinogenesis.
Databáze: MEDLINE