Increased myocardial oxygen consumption by TNF-alpha is mediated by a sphingosine signaling pathway.

Autor: Hofmann U; Department of Medicine/Cardiology, University of Würzburg, Germany., Domeier E, Frantz S, Laser M, Weckler B, Kuhlencordt P, Heuer S, Keweloh B, Ertl G, Bonz AW
Jazyk: angličtina
Zdroj: American journal of physiology. Heart and circulatory physiology [Am J Physiol Heart Circ Physiol] 2003 Jun; Vol. 284 (6), pp. H2100-5. Date of Electronic Publication: 2003 Jan 30.
DOI: 10.1152/ajpheart.00888.2002
Abstrakt: The present study investigated the effect of tumor necrosis factor (TNF)-alpha on myocardial energy metabolism as estimated by myocardial oxygen consumption (MVo(2)). MVo(2) of electrically stimulated isolated trabeculae of right ventricular Wistar rat myocardium was analyzed using a Clark-type oxygen probe. After the initial data collection in the absence of TNF-alpha, measurements were repeated after TNF-alpha stimulation. In separate experiments, pretreatment with the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) or the ceramidase inhibitor n-oleoylethanolamine (NOE) was done to investigate NO/sphingosine-related effects. TNF-alpha impaired myocardial economy at increasing stimulation frequencies without altering baseline MVo(2). Incubation with TNF-alpha in the presence of l-NAME further impaired myocardial economy. NOE preincubation abrogated the TNF-alpha effect on myocardial economy. Moreover, the negative inotropic effect of TNF-alpha was observed in NOE-pretreated but not l-NAME-pretreated muscle fibers. Exogenous sphingosine mimicked the TNF-alpha effect on mechanics and energetics. We conclude that TNF-alpha impairs the economy of chemomechanical energy transduction primarily through a sphingosine-mediated pathway.
Databáze: MEDLINE