Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet.

Autor: Chicco A; Department of Biochemistry, School of Biochemistry University of Litoral, Santa Fe, Argentina., D'Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB
Jazyk: angličtina
Zdroj: The Journal of nutrition [J Nutr] 2003 Jan; Vol. 133 (1), pp. 127-33.
DOI: 10.1093/jn/133.1.127
Abstrakt: Feeding rats a sucrose rich diet (SRD) induces hypertriglyceridemia and insulin resistance. The purposes of this study were to determine the time course of changes in lipid and glucose metabolism in the gastrocnemius muscle, both in the basal state and after the euglycemic hyperinsulinemic clamp, in rats fed a SRD for 3, 15 or 30 wk, and to analyze the changes in glucose-stimulated insulin secretion from perifused isolated islets from SRD-fed rats and their relationships to peripheral insulin insensitivity. A control group of rats was fed a control diet (CD) for the same period of time. After 3 wk of consuming the SRD, long-chain acyl CoA (LCACoA) levels in muscle were greater than in rats fed the CD, an early indication of the disturbance of lipid metabolism. Neither glycogen storage nor glucose oxidation were impaired at this time. Moreover, the biphasic patterns of glucose-stimulated insulin secretion showed a marked increase in the first peak, which helped maintain normoglycemia in SRD-fed rats. After 15 or 30 wk of consuming the SRD, triglyceride and LCACoA levels in muscles were greater than in rats fed the CD. Glucose oxidation as well as insulin-stimulated glycogen synthase activity and glycogen storage were lower than in rats fed the CD. Moreover, the altered pattern of insulin secretion further deteriorated. This was accompanied by peripheral insulin resistance and moderate hyperglycemia. Our results indicate that the dyslipemia present in rats chronically fed a SRD may play an important role in the progressive deterioration of insulin secretion and sensitivity in this animal model.
Databáze: MEDLINE