[Development of better tolerated prosthetic materials: applications in gynecological surgery].

Autor: Debodinance P; Service de Gynécologie Obstétrique, CH Dunkerque, 43, rue des Pinsons, 59430 Saint-Pol-sur-Mer, France. ph.debodinance@dial.oleane.com, Delporte P, Engrand JB, Boulogne M
Jazyk: francouzština
Zdroj: Journal de gynecologie, obstetrique et biologie de la reproduction [J Gynecol Obstet Biol Reprod (Paris)] 2002 Oct; Vol. 31 (6), pp. 527-40.
Abstrakt: Unlabelled: Meshes have come to be widely used for surgical repair of the dysfunctional pelvic floor. The problem to date has been mesh intolerance. History. The first meshes were made with silver filigrees or stainless steel. Non-metallic and non-absorbable synthetic prostheses include nylon, silastic, polytetrafluoroethylene as well as expansive polyester and polypropylene forms. Most of the absorbable prostheses are made of polyglycolic acid and polyglactine 910. Classification. Four groups of biomaterials can be described according to pore size. Mechanical and biological properties. The mechanical properties of meshes have been tested industrially for resistance, pliability, elasticity and ductile qualities. These properties depend on type of tissue structure (woven or knitted) and the type of fiber used (mono and multi-filaments). The goal is to obtain a "silent" material, i.e. a material which does not trigger a host tissue reaction. Introducing the foreign body induces a "scarring" response. This fibroblastic reaction replaces the inflammatory reaction, leading to progressive colonization of the prosthesis. The major risk is infection caused by a disturbance of the inflammatory phase and bacterial development. Bacteria can be trapped in fibrotic tissue, with the risk of delayed infection. Immunological reactions may have an additive effect. These problems are not encountered with absorbable meshes. An ideal implant material must: not undergo physical modification by tissue fluids, be chemically inert, not trigger inflammatory or foreign body cell response in body tissues, be noncarcinogenic and nonallergenic, be capable of resisting mechanical stress and sterilization, and be able to be manufactured in the necessary shape. Polyester, polypropylene and expansive polytetrafluoroethylene fulfill these criteria. The ideal mesh. Eleven criteria are proposed. Complications for hernia repair. Infection and seroma are the most frequent complications with micro-porous meshes. Macro-porous meshes can cause erosive phenomena and adhesions. Retraction of synthetic tissues is observed in 20 to 30% of cases. Meshes in gynecology. In gynecology surgery, meshes made their first appearance in trans-abdominal sacrocolpopexy and slings. A detailed review of complications found in 32 articles studying slings and 22 studying sacrocolpopexy with approximately 10 types of meshes shows that intolerance of slings has oscillated between 1% with Prolene and 31% with Gore-Tex; for abdominal sacrocolpopexy the rate was between 1.7% with Prolene and 20% with Teflon. Rejection phenomena appear during the first year and are proportional to the surface area of the synthetic tissue and the proximity of the vaginal scar. New materials have been proposed over the last ten years for prolapse surgery, notably for cystocele, which accounts for 70% of all repair procedures. Nearly fifteen studies have reported a level of intolerance reaching 6%, the large majority of the meshes used being Prolene meshes. Our personal experience with 87 repair procedures has led us to the conclusion that Prolene is the most adapted mesh, allowing free tension between the bladder and the anterior vaginal wall.
Conclusion: Continuous evaluation is needed to study these replacement materials which should in theory, improve the rate of recurrence, which is at present 20% with classic procedures not using a mesh.
Databáze: MEDLINE