Autor: |
Cho JY; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210-1218, USA., Shen DH, Yang W, Williams B, Buckwalter TL, La Perle KM, Hinkle G, Pozderac R, Kloos R, Nagaraja HN, Barth RF, Jhiang SM |
Jazyk: |
angličtina |
Zdroj: |
Gene therapy [Gene Ther] 2002 Sep; Vol. 9 (17), pp. 1139-45. |
DOI: |
10.1038/sj.gt.3301787 |
Abstrakt: |
Radioactive iodide uptake (RAIU) in thyroid follicular epithelial cells, mediated by the sodium iodide symporter (NIS), is the first rate-limiting step in iodide accumulation which provides a mechanism for effective radioiodide treatment for patients with thyroid cancer. We hypothesize that NIS gene transfer to non-thyroid tumor cells will enhance intracellular radioiodide accumulation and result in better tumor control. Here, we performed non-invasive tumor imaging and (131)I therapy studies using rats bearing intracerebral F98 gliomas that have been retrovirally transduced with human NIS. Our results show that: (1) NIS is expressed in the intracerebral F98/NIS gliomas; (2) F98/NIS gliomas can be imaged by (99m)TcO(4) (whose uptake is also mediated by NIS) and (123)I scintigraphy; (3) significant amounts of radioiodide were retained in the tumors at 24 h after (123)I injection; (4) RAIU and NIS expression in the thyroid gland can be reduced by feeding a thyroxine-supplemented diet; and (5) survival time was increased in rats bearing F98/hNIS tumors by (131)I treatment. These studies warrant further investigating tumor imaging and therapeutic strategies based on NIS gene transfer followed by radioiodide administration in a variety of human cancers. |
Databáze: |
MEDLINE |
Externí odkaz: |
|