Novel tubing microreactor for monitoring chemical reactions.

Autor: Nielsen CA; The Dow Chemical Company, Corporate R&D, Midland, Michigan 48674, USA., Chrisman RW, LaPointe RE, Miller TE Jr
Jazyk: angličtina
Zdroj: Analytical chemistry [Anal Chem] 2002 Jul 01; Vol. 74 (13), pp. 3112-7.
DOI: 10.1021/ac020100i
Abstrakt: There is an expanding interest in small-scale methods to evaluate catalysts and chemical reactions at a variety of conditions, ranging up to 6.9 MPa (1000 psig) and 300 degrees C. Multiwell parallel batch techniques are most commonly applied in high-throughput screening systems. In contrast, we describe here a rapid, serial, highly controllable method based on LC-type steel tubing rated for high pressures. The tube, containing a variety of flowing ingredients, such as carrier solvents, catalyst formulations, and reactants, is self-heated ohmically using electrical current from a power supply monitored and regulated with a precision of 0.01%. An array of voltage taps arranged along its length serves to sense the real-time temperature profile of the tube. Reactions are seen as temperature pulses progressing through the reactor, in zones of 200 microL each, and tracked with a temperature precision of 0.1 degrees C. A unique pressure controller was devised to maintain constant reactor pressures despite effluent viscosity fluctuations due to polymerization. Several chemical reaction systems have been characterized to date, including decomposition reactions of di-tert-butyl peroxide, polymerizations of styrene, formation of polyethylene from ethylene, and copolymerization of ethylene with 1-octene. For ethylene polymerization, the amount of mass of polymer formed is proportional to the responses observed.
Databáze: MEDLINE