New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25.

Autor: Hurst SD; DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA. hurst@corgentech.com, Muchamuel T, Gorman DM, Gilbert JM, Clifford T, Kwan S, Menon S, Seymour B, Jackson C, Kung TT, Brieland JK, Zurawski SM, Chapman RW, Zurawski G, Coffman RL
Jazyk: angličtina
Zdroj: Journal of immunology (Baltimore, Md. : 1950) [J Immunol] 2002 Jul 01; Vol. 169 (1), pp. 443-53.
DOI: 10.4049/jimmunol.169.1.443
Abstrakt: We have biologically characterized two new members of the IL-17 cytokine family: IL-17F and IL-25. In contrast to conventional in vitro screening approaches, we have characterized the activity of these new molecules by direct in vivo analysis and have compared their function to that of other IL-17 family members. Intranasal administration of adenovirus expressing IL-17, IL-17C, or IL-17F resulted in bronchoalveolar lavage neutrophilia and inflammatory gene expression in the lung. In contrast, intranasal administration of IL-25-expressing adenovirus or IL-25 protein resulted in the production of IL-4, IL-5, IL-13, and eotaxin mRNA in the lung and marked eosinophilia in the bronchoalveolar lavage and lung tissue. Mice given intranasal IL-25 also developed epithelial cell hyperplasia, increased mucus secretion, and airway hyperreactivity. IL-25 gene expression was detected following Aspergillus and Nippostrongylus infection in the lung and gut, respectively. IL-25-induced eosinophilia required IL-5 and IL-13, but not IL-4 or T cells. Following IL-25 administration, the IL-5(+) staining cells were CD45R/B220(+), Thy-1(+/-), but were NK1.1-, Ly-6G(GR-1)-, CD4-, CD3-, and c-kit-negative. gamma-common knockout mice did not develop eosinophilia in response to IL-25, nor were IL-5(+) cells detected. These findings suggest the existence of a previously unrecognized cell population that may initiate Th2-like responses by responding to IL-25 in vivo. Further, these data demonstrate the heterogeneity of function within the IL-17 cytokine family and suggest that IL-25 may be an important mediator of allergic disease via production of IL-4, IL-5, IL-13, and eotaxin.
Databáze: MEDLINE