Autor: |
Shasby DM; Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA. michael.shasby@uiowa.edu, Ries DR, Shasby SS, Winter MC |
Jazyk: |
angličtina |
Zdroj: |
American journal of physiology. Lung cellular and molecular physiology [Am J Physiol Lung Cell Mol Physiol] 2002 Jun; Vol. 282 (6), pp. L1330-8. |
DOI: |
10.1152/ajplung.00329.2001 |
Abstrakt: |
Histamine increases microvascular permeability by creating small transitory (100-400 nm) gaps between adjacent endothelial cells at sites of vascular endothelial (VE)-cadherin-based adhesion. We examined the effects of histamine on the proteins within the VE-cadherin-based adherens junction in primary human umbilical vein endothelial cells. VE-cadherin is linked not only by beta- and alpha-catenin to cortical actin but also by gamma-catenin to the intermediate filament vimentin. In mature human umbilical vein cultures, the VE-cadherin immunoprecipitate contained equivalent amounts of alpha- and beta-catenin, 130% as much beta- as gamma-catenin, and 50% as much actin as vimentin. Within 60 s, histamine decreased the fraction of VE-cadherin in the insoluble portion of the cell lysate by 35 +/- 1.5%. At the same time, histamine decreased the amount of vimentin that immunoprecipitated with VE-cadherin by 50 +/- 6%. Histamine did not affect the amount of actin or the amount of alpha-, beta-, or gamma-catenin that immunoprecipitated with VE-cadherin. Within 60 s, histamine simulated a doubling in the phosphorylation of VE-cadherin and beta- and gamma-catenin. The VE-cadherin immunoprecipitate contained kinase activity that phosphorylated VE-cadherin and gamma-catenin in vitro. |
Databáze: |
MEDLINE |
Externí odkaz: |
|