Abstrakt: |
The intrahypophysial mechanisms involved in the control of gonadotrophin secretion remain unclear. In the horse, a divergent pattern of gonadotrophins is observed at different stages of the reproductive cycle in response to a single secretagogue (gonadotrophin-releasing hormone), and dramatic changes in fertility take place throughout the year in response to photoperiod. This species thus provides a useful model to investigate the regulation of fertility directly at the level of the hypophysis. A series of studies were undertaken to examine the cytological arrangements and heterogeneity of gonadotrophin storage in the pars distalis (PD) and pars tuberalis (PT) of the hypophysis of male and female horses. Specifically, the seasonal and gonadal effects on distribution, density and hormonal identity of gonadotrophs, the existence of gonadotroph-lactotroph associations and the expression of prolactin receptors (PRL-R) as possible morphological bases for the differential control of gonadotrophin secretion were investigated. It became apparent that both isolated and clustered gonadotrophs are normally distributed around the pars intermedia and surrounding capillaries in the PD, and in the caudal ventral region of the PT. In the PD, no effects of season or of reproductive state on the density or number of gonadotrophs could be detected in either male or female animals. In contrast, a fivefold increase in gonadotroph density was observed in the PT during the sexually active stage. In males, robust gonadal effects were detected on the gonadotroph population; orchidectomy significantly reduced both the number and proportion of gonadotrophs, in relation to other hypophysial cell types, in both the PD and PT regions. Luteinizing hormone (LH) monohormonal, follicle-stimulating hormone (FSH) monohormonal and bihormonal gonadotrophs were identified in the PD and PT of male and female horses. Interestingly, in males, the relative proportions of gonadotroph subtypes and the LH/FSH monohormonal gonadotroph ratio were not affected by either season or the presence of the gonads. In contrast, a larger proportion of monohormonal gonadotrophs was clearly observed in sexually active females. Specific gonadotroph-lactotroph associations and expression of PRL-R in cells other than gonadotrophs were detected in the PD throughout the annual reproductive cycle. In addition to a stimulatory gonadal effect on lactotroph density, a substantial gonadal-independent effect of season was apparent on this variable. The findings have revealed important seasonal and gonadal effects on the cytological configuration of the equine hypophysis, which may provide the morphological basis for the intrahypophysial control of fertility. |