Autor: |
Imshenetsky AA; Institute of Microbiology, Academy of Sciences of the USSR, Moscow, USSR., Abyzov SS, Voronov GT, Kuzjurina LA, Lysenko SV, Sotnikov GG, Fedorova RI |
Jazyk: |
angličtina |
Zdroj: |
Life sciences and space research [Life Sci Space Res] 1967; Vol. 5, pp. 250-60. |
Abstrakt: |
A study of the action of different physical factors on micro-organisms is necessary for a further development of exobiology. The action of temperature on crystalline preparations of catalase and peroxidase was studied by means of oscillographic polarography. A determination of the height of polarographic waves at the decrease of temperature from 20 degrees C to 0 degrees C has shown that structural elements of the peroxidase molecule connected with the enzymatic activity are more stable with the decrease of temperature cf. catalase. A relative resistance of the dehydrogenase activity in Az. vinelandii cells to high vacuum was found. Incubation of azotobacter cells under vacuum of 10(-9) mm Hg during 72 hr did not decrease the activity of alcohol and succinic dehydrogenase. Bac. cereus spores can be preserved from bactericidal UV action by thin films of chrome. The thickness of chrome film being 200-670 angstroms, spores are killed by a dose of 7.8 x 10(7) erg/cm2 at 253.7 microns wave length. Spores covered by chrome film thicker than 800 angstroms remain alive after this treatment. Investigations carried out with an 'Artificial Mars' camera led to the following results. The growth of Bac. megaterium on liquid growth media in this camera ceases as a result of UV rays killing all cells after 3 weeks. Untreated bacteria grow in the camera for a long time. Spore-forming bacteria isolated from the sand of the Kara-Kum Desert grow in ground limonite (with the addition of 2% garden soil) having maximum hygroscopic humidity (3.8%). Freezing and thawing (from -60 degrees C to +25 degrees C) corresponding to day temperature deviations on Mars, low pressure (P=10 mm Hg) and the composition of the atmosphere (CO2-50%, N2-40%, Ar-10%) do not influence the growth of xerophylic bacteria under study. Humidity is the main factor limiting the growth of micro-organisms under 'Artificial Mars' conditions. According to the further development of the microbiological meteorite analysis methods, samples of rocks and stone meteorites were sterilized, incubated in the desert or on a snow surface in the Arctic and after different times (from 100 days to 7 months), investigated. In all cases, microbes were found only on the sample surfaces, whereas 1 cm from the surface and in the central parts micro-organism were completely absent. Hence, microbiological analysis of central parts of meteorites fallen in the Arctic or during dry periods of the year in the desert can give reliable results. |
Databáze: |
MEDLINE |
Externí odkaz: |
|