Abstrakt: |
Susceptibility to collagen induced arthritis (CIA) in the murine model is linked to expression of the MHC class II alleles, I-Aq and I-Ar. We have examined the molecular basis for this MHC-linked susceptibility by studying the antigen presentation function of two class II molecules, I-Aq and I-Ap, that are closely related yet differ in mediating susceptibility to CIA. These class II molecules differ by only 4 amino acids, yet only mice expressing I-Aq develop CIA. Although the I-Ap molecule can bind the same immunodominant determinant from type II collagen as I-Aq, H-2p APC have difficulty generating I-Ap:CII peptide complexes when processing of CII is required. Immunization of H-2p mice with type II collagen (CII) generated only a weak T cell response when compared to H-2q mice, whereas immunization with the a CII peptide containing the dominant determinant induced a strong T cell response in both strains. In antigen presentation assays, H-2p APC were very inefficient in stimulating T cells when native CII was used as antigen, however they presented CII synthetic peptides with similar efficiency as H-2q APC. Processing and presentation of other antigens by H-2p APC was not affected. Using soluble class II binding assays, the affinity of I-Ap for the CII dominant peptide was 10 to 50 fold lower than I-Aq, however, this reduced affinity was not a general defect in I-Ap function. I-Aq and I-Ap had virtually identical affinities for binding other antigenic peptides. These data indicate that MHC-based susceptibility to autoimmunity may involve more than simple determinant selection and that the successful generation of an antigenic peptide by processing may be related to the overall affinity of the peptide for the MHC molecule. |