Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of E(rns) or E2 of CSFV.

Autor: van Gennip HG; Division of Infectious Diseases and Food Chain Quality, Institute for Animal Science and Health (ID-Lelystad), P.O. Box 65, 8200 AB Lelystad, The Netherlands., Bouma A, van Rijn PA, Widjojoatmodjo MN, Moormann RJ
Jazyk: angličtina
Zdroj: Vaccine [Vaccine] 2002 Feb 22; Vol. 20 (11-12), pp. 1544-56.
DOI: 10.1016/s0264-410x(01)00497-2
Abstrakt: Three mutants with deletions in the E2 gene of the infectious DNA copy of the classical swine fever virus (CSFV) strain-C were constructed: one missing the B/C domain of CSFV-E2 between amino acids (aa) 693 and 746, one missing the A domain between aa 800 and 864, and one missing the complete E2 between aa 689 and 1062. All three CSFV-E2 deletion mutants were unable to generate viable virus, indicating that each of the antigenic domains of E2 is essential for viability of CSFV. To rescue the CSFV-E2 deletion mutants SK6 cell lines constitutively expressing glycoprotein E2 of CSFV were generated. The rescued viruses infected and replicated in SK6 cells as demonstrated by expression of viral proteins, but this primary infection did not result in reproduction of infectious virus. Thus, these E2 complemented viruses are considered non-transmissible. In previous experiments, we showed that simultaneous injection of E(rns) complemented virus (Flc23) via intradermal (ID), intramuscular (IM) or intranasal (IN) routes conferred protection to pigs against a lethal challenge with CSFV [J. Virol. 74 (2000) 2973]. Here, we evaluate different routes of application (ID, IM or IN) with E(rns) complemented virus Flc23 in order to find the best route for complemented CSFVs. Intradermal injection with Flc23 protected pigs against a lethal CSFV challenge, whereas intramuscular injection induced partial protection, and intranasal injection did not mediate a protective immune response in pigs at all. We used the intradermal route of vaccination to test the E2 complemented viruses. Vaccination of pigs via the intradermal route with the E2 complemented CSFVs also resulted in the induction of antibodies and in (partial) protection against CSFV challenge. Pigs vaccinated with E2 complemented virus Flc4 (deletion B/C domain) survived a lethal CSFV challenge, whereas partial protection was induced in pigs vaccinated with Flc47 (deletion E2) or Flc48 (deletion A domain) E2 complemented viruses. Serological data demonstrate that these E2 complemented mutant viruses are, in combination with well known diagnostic tests based on E2, potential marker vaccines for CSF.
Databáze: MEDLINE