Abstrakt: |
An overview of the major concepts of Controlled Ecological Life Support System (CELSS) includes an identification of environmental factors, such as gravity levels, light levels, and growth volume, that influence the type of CELSS system that can be developed. Various plant growth systems are described together with their possible space applications. Life support functions performed by plants include food production, atmosphere regeneration, and water purification. Selected relationships between biological and physical-chemical life support techniques are considered as a part of these functions. Consumers in a CELSS may be humans, animals, or microorganisms, but nutritional, water, and atmosphere requirements of humans are emphasized in this report, as they are the primary requirement drivers for a CELSS design. The human role in waste generation is discussed as it affects plant nutrient availability. The role of waste management systems in recovering nutrients for plant growth and requirements for CELSS are defined for air, water, and food. Both physical and a biological nutrient recovery/waste disposal systems are examined. The separate subsystems of a CELSS are identified and discussed. Nutrient recovery, plant irradiation, automation, and facilities equipment and applications are reviewed with special attention to direct solar irradiation using fiber optics. These subsystems, along with other environmental control systems, such as thermal, humidity, and ventilation, are essential to plant growth in the space environment. |