Different mechanisms of oxidative stress and neurotoxicity for Alzheimer's A beta(1--42) and A beta(25--35).

Autor: Varadarajan S; Departments of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA., Kanski J, Aksenova M, Lauderback C, Butterfield DA
Jazyk: angličtina
Zdroj: Journal of the American Chemical Society [J Am Chem Soc] 2001 Jun 20; Vol. 123 (24), pp. 5625-31.
DOI: 10.1021/ja010452r
Abstrakt: Oxidative stress induced by amyloid beta-peptide (A beta) has been implicated in the neurodegeneration observed in Alzheimer's disease (AD) brain. However, the mechanism by which the predominant form of A beta found in AD brains, A beta(1--42), causes oxidative stress and neurotoxicity remains unknown. Numerous laboratories have used the smaller 11-amino acid fragment of the full-length peptide, A beta(25--35), as a convenient alternative in AD investigations since the smaller peptide mimics several of the toxicological and oxidative stress properties of the native full-length peptide. Our observation that the truncated peptide is more rapidly toxic and causes more oxidative damage than the parent A beta(1--42) led us to investigate the cause for this enhanced toxicity of A beta(25--35) in order to gain insight into the mechanism of action of these peptides. These studies reveal that two different mechanisms may be operative in the two peptides; however, the single methionine residue in the peptides appears to play a crucial role in both mechanisms. That methionine is C-terminal in A beta(25--35) seems to be the cause for its exaggerated effects. When the next amino acid in the sequence of A beta(1--42) (valine) is appended to A beta(25--35), the resultant peptide, A beta(25--36), in which methionine is no longer C-terminal, is neither toxic to cultured neurons nor does it cause oxidative damage. Additionally, oxidizing the sulfur of methionine to a sulfoxide abrogates the damaging effects of both A beta(25--35) and A beta(1--42). The putative mechanistic role of methionine in the observed properties of A beta peptides is discussed in the context of the obtained results as is the role of A beta(1--42)-induced oxidative stress in the neurodegeneration found in AD brain.
Databáze: MEDLINE