Autor: |
Kryatov SV; Department of Chemistry, Tufts University, Medford, MA 02155, USA., Rybak-Akimova EV, MacMurdo VL, Que L Jr |
Jazyk: |
angličtina |
Zdroj: |
Inorganic chemistry [Inorg Chem] 2001 May 07; Vol. 40 (10), pp. 2220-8. |
DOI: |
10.1021/ic001300k |
Abstrakt: |
A kinetic study of the reaction between a diiron(II) complex [Fe(II)(2)(mu-OH)(2)(6-Me(3)-TPA)(2)](2+) 1, where 6-Me(3)-TPA = tris(6-methyl-2-pyridylmethyl)amine, and dioxygen is presented. A diiron(III) peroxo complex [Fe(III)(2)(mu-O)(mu-O(2))(6-Me(3)-TPA)(2)](2+) 2 forms quantitatively in dichloromethane at temperatures from -80 to -40 degrees C. The reaction is first order in [Fe(II)(2)] and [O(2)], with the activation parameters DeltaH(double dagger) = 17 +/- 2 kJ mol(-1) and DeltaS(double dagger) = -175 +/- 20 J mol(-1) K(-1). The reaction rate is not significantly influenced by the addition of H(2)O or D(2)O. The reaction proceeds faster in more polar solvents (acetone and acetonitrile), but the yield of 2 is not quantitative in these solvents. Complex 1 reacts with NO at a rate about 10(3) faster than with O(2). The mechanistic analysis suggests an associative rate-limiting step for the oxygenation of 1, similar to that for stearoyl-ACP Delta(9)-desaturase, but distinct from the probable dissociative pathway of methane monoxygenase. An eta(1)-superoxo Fe(II)Fe(III) species is a likely steady-state intermediate during the oxygenation of complex 1. |
Databáze: |
MEDLINE |
Externí odkaz: |
|