Role of nitric oxide in the airway response to exercise in healthy and asthmatic subjects.

Autor: De Gouw HW; Department of Pulmonology, Leiden University Medical Center, NL-2300 RC Leiden, The Netherlands., Marshall-Partridge SJ, Van Der Veen H, Van Den Aardweg JG, Hiemstra PS, Sterk PJ
Jazyk: angličtina
Zdroj: Journal of applied physiology (Bethesda, Md. : 1985) [J Appl Physiol (1985)] 2001 Feb; Vol. 90 (2), pp. 586-92.
DOI: 10.1152/jappl.2001.90.2.586
Abstrakt: A role of nitric oxide (NO) has been suggested in the airway response to exercise. However, it is unclear whether NO may act as a protective or a stimulatory factor. Therefore, we examined the role of NO in the airway response to exercise by using N-monomethyl-L-arginine (L-NMMA, an NO synthase inhibitor), L-arginine (the NO synthase substrate), or placebo as pretreatment to exercise challenge in 12 healthy nonsmoking, nonatopic subjects and 12 nonsmoking, atopic asthmatic patients in a double-blind, crossover study. Fifteen minutes after inhalation of L-NMMA (10 mg), L-arginine (375 mg), or placebo, standardized bicycle ergometry was performed for 6 min using dry air, while ventilation was kept constant. The forced expiratory volume in 1-s response was expressed as area under the time-response curve (AUC) over 30 min. In healthy subjects, there was no significant change in AUC between L-NMMA and placebo treatment [28.6 +/- 17.0 and 1.3 +/- 20.4 (SE) for placebo and L-NMMA, respectively, P = 0.2]. In the asthmatic group, L-NMMA and L-arginine induced significant changes in exhaled NO (P < 0.01) but had no significant effect on AUC compared with placebo (geometric mean +/- SE: -204.3 +/- 1.5, -186.9 +/- 1.4, and -318.1 +/- 1.2%. h for placebo, L-NMMA, and L-arginine, respectively, P > 0.2). However, there was a borderline significant difference in AUC between L-NMMA and L-arginine treatment (P = 0.052). We conclude that modulation of NO synthesis has no effect on the airway response to exercise in healthy subjects but that NO synthesis inhibition slightly attenuates exercise-induced bronchoconstriction compared with NO synthase substrate supplementation in asthma. These data suggest that the net effect of endogenous NO is not inhibitory during exercise-induced bronchoconstriction in asthma.
Databáze: MEDLINE