Autor: |
Sergienko EA; Department of Chemistry, Rutgers, the State University, Newark, New Jersey 07102, USA., Wang J, Polovnikova L, Hasson MS, McLeish MJ, Kenyon GL, Jordan F |
Jazyk: |
angličtina |
Zdroj: |
Biochemistry [Biochemistry] 2000 Nov 14; Vol. 39 (45), pp. 13862-9. |
DOI: |
10.1021/bi001214w |
Abstrakt: |
Thiamin diphosphate (ThDP)-dependent enzymes catalyze a range of transformations, such as decarboxylation and ligation. We report a novel spectroscopic assay for detection of some of the ThDP-bound intermediates produced on benzoylformate decarboxylase. Benzoylformate decarboxylase was mixed with its alternate substrate p-nitrobenzoylformic acid on a rapid-scan stopped-flow instrument, resulting in formation of three absorbing species (lambda(max) in parentheses): I(1) (a transient at 620 nm), I(2) (a transient at 400 nm), and I(3) (a stable absorbance with lambda(max) > 730 nm). Analysis of the kinetics of the two transient species supports a model in which a noncovalent complex of the substrate and the enzyme is converted to the first covalent intermediate I(1); the absorbance corresponding to I(1) is probably a charge-transfer band arising from the interaction of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct (2-p-nitromandelylThDP) and the enzyme. The rate of disappearance of I(1) parallels the rate of formation of I(2). Chemical models suggest the lambda(max) of I(2) (near 400 nm) to be appropriate to the enamine, a key intermediate in ThDP-dependent reactions resulting from the decarboxylation of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct. Therefore, the rate of disappearance of I(1) and/or the appearance of I(2) directly measure the rate of decarboxylation. A relaxation kinetic treatment of the pre-steady-state kinetic data also revealed a hitherto unreported facet of the mechanism, alternating active-sites reactivity. Parallel studies of the His70Ala BFD active-site variant indicate that it cannot form the complex reported by the charge-transfer band (I(1)) at the level of the wild-type protein. |
Databáze: |
MEDLINE |
Externí odkaz: |
|