alpha3-galactosylated glycoproteins can bind to the hepatic asialoglycoprotein receptor.

3Galbeta1-->4R is present on glycoprotein glycans. To investigate if alpha3-galactosylated glycoproteins, just like desialylated glycoproteins, could be cleared by the hepatic lectin, the affinities of alpha3-galactosylated compounds towards this lectin were determined using an in vitro inhibition assay, and were compared with those of the parent compounds terminating in Galbeta1-->4R. Diantennary, triantennary and tetraantennary oligosaccharides that form part of N-glycans were alpha3-galactosylated to completion by use of recombinant bovine alpha3-galactosyltransferase. Similarly, desialylated alpha1-acid glycoprotein (orosomucoid) was alpha3-galactosylated in vitro. The alpha3-galactosylation of a branched, Galbeta1-->4-terminated oligosaccharide lowered its affinity for the membrane-bound lectin on whole rat hepatocytes 50-250-fold, and for the detergent-solubilized hepatic lectin 7-50-fold. In contrast, alpha3-galactosylation of asialo-alpha1-acid glycoprotein caused only a minor decrease in affinity, increasing the IC50 from 5 to 15 nM. Fully alpha3-galactosylated alpha1-acid glycoprotein, intravenously injected into the mouse, was rapidly cleared from the circulation, with a clearance rate close to that of asialo-alpha1-acid glycoprotein (t1/2 of 0.42 min vs. 0.95 min). Its uptake was efficiently inhibited by pre-injection of an excess asialo-fetuin. Organ distribution analysis showed that the injected alpha1-acid glycoprotein accumulated predominantly in the liver. Taken together, these observations suggest that serum glycoproteins that are heavily alpha3-galactosylated will be rapidly cleared from the bloodstream via the hepatic lectin. It is suggested that glycosyltransferase expression in murine hepatocytes is tightly regulated in order to prevent undesired uptake of hepatocyte-derived, circulating glycoproteins. -->
Substance Nomenclature: 0 (Asialoglycoprotein Receptor)
0 (Asialoglycoproteins)
0 (Blood Proteins)
0 (Glycoproteins)
0 (Lectins)
0 (Oligosaccharides)
0 (Orosomucoid)
0 (Receptors, Cell Surface)
0 (asialoorosomucoid)
EC 2.4.1.- (Galactosyltransferases)
EC 2.4.1.87 (N-acetyllactosaminide alpha-1,3-galactosyltransferase)
X2RN3Q8DNE (Galactose)
Entry Date(s): Date Created: 20001013 Date Completed: 20001214 Latest Revision: 20190620
Update Code: 20231215
DOI: 10.1046/j.1432-1327.2000.01747.x
PMID: 11029595
Autor: Joziasse DH; Department of Medical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands. dh.joziasse.medchem@med.vu.nl, Lee RT, Lee YC, Biessen EA, Schiphorst WE, Koeleman CA, van den Eijnden DH
Jazyk: angličtina
Zdroj: European journal of biochemistry [Eur J Biochem] 2000 Nov; Vol. 267 (21), pp. 6501-8.
DOI: 10.1046/j.1432-1327.2000.01747.x
Abstrakt: In mammals, clearance of desialylated serum glycoproteins to the liver is mediated by a galactose-specific hepatic lectin, the 'asialoglycoprotein receptor'. In humans, serum glycoprotein glycans are usually capped with sialic acid, which protects these proteins against hepatic uptake. However, in most other species, an additional noncharged terminal element with the structure Galalpha1-->3Galbeta1-->4R is present on glycoprotein glycans. To investigate if alpha3-galactosylated glycoproteins, just like desialylated glycoproteins, could be cleared by the hepatic lectin, the affinities of alpha3-galactosylated compounds towards this lectin were determined using an in vitro inhibition assay, and were compared with those of the parent compounds terminating in Galbeta1-->4R. Diantennary, triantennary and tetraantennary oligosaccharides that form part of N-glycans were alpha3-galactosylated to completion by use of recombinant bovine alpha3-galactosyltransferase. Similarly, desialylated alpha1-acid glycoprotein (orosomucoid) was alpha3-galactosylated in vitro. The alpha3-galactosylation of a branched, Galbeta1-->4-terminated oligosaccharide lowered its affinity for the membrane-bound lectin on whole rat hepatocytes 50-250-fold, and for the detergent-solubilized hepatic lectin 7-50-fold. In contrast, alpha3-galactosylation of asialo-alpha1-acid glycoprotein caused only a minor decrease in affinity, increasing the IC50 from 5 to 15 nM. Fully alpha3-galactosylated alpha1-acid glycoprotein, intravenously injected into the mouse, was rapidly cleared from the circulation, with a clearance rate close to that of asialo-alpha1-acid glycoprotein (t1/2 of 0.42 min vs. 0.95 min). Its uptake was efficiently inhibited by pre-injection of an excess asialo-fetuin. Organ distribution analysis showed that the injected alpha1-acid glycoprotein accumulated predominantly in the liver. Taken together, these observations suggest that serum glycoproteins that are heavily alpha3-galactosylated will be rapidly cleared from the bloodstream via the hepatic lectin. It is suggested that glycosyltransferase expression in murine hepatocytes is tightly regulated in order to prevent undesired uptake of hepatocyte-derived, circulating glycoproteins.
Databáze: MEDLINE