Catecholamine storage vesicle protein expression in genetic hypertension.

Autor: O'Connor DT; Department of Medicine, Center for Molecular Genetics, University of California, V.A. San Diego Healthcare System, USA. doconnor@ucsd.edu, Takiyyuddin MA, Printz MP, Dinh TQ, Barbosa JA, Rozansky DJ, Mahata SK, Wu H, Kennedy BP, Ziegler MG, Wright FA, Schlager G, Parmer RJ
Jazyk: angličtina
Zdroj: Blood pressure [Blood Press] 1999; Vol. 8 (5-6), pp. 285-95.
DOI: 10.1080/080370599439508
Abstrakt: Chromogranin A expression is heritable in humans, and both plasma chromogranin A concentration and its releasable adrenal and sympathetic neuronal pools are augmented in established essential (hereditary) hypertension. To evaluate chromogranin A further as a simpler or "intermediate phenotype" in the complex trait of hypertension, we studied chromogranin A expression in the spontaneously hypertensive rat (SHR), a rodent model of essential hypertension. Both plasma (p < 0.0001) and adrenal medullary (p = 0.003 to p < 0.0001) chromogranin A were elevated in the SHR, even at the earliest stages (3-4 weeks of age). In the adult adrenal gland, both chromogranin A (p=0.005) and norepinephrine (p=0.011) were increased in the SHR, while dopamine beta-hydroxylase activity was diminished (p < 0.0001). Chromogranin A mRNA expression was also elevated in the SHR adrenal medulla (p = 0.017). Differences in chromogranin A processing were not noted between SHR and Wistar Kyoto control (WKY) rats. In an SHR x WKY genetic intercross, control of the adrenal chromogranin A phenotype by a single major locus was suggested by comparison of phenotypic variance of the F2 vs F1 generations, and by bimodal frequency histogram (3:1 ratio), confirmed by maximum likelihood analysis (chi2 = 74.6, p < 0.000001) in the F2 generation. However, microsatellite alleles at a surrogate locus (Ighe) 12.7 cM from chromogranin A (Chga), on rat chromosome 6, failed to co-segregate with blood pressure in an F2 generation (F = 0.06, p = 0.94). In another rodent model of hereditary hypertension, the genetically hypertensive mouse (BPH/2), adrenal chromogranin A (p=0.018) and norepinephrine (p = 0.004) were actually diminished. We conclude that over-expression of chromogranin A is a variable feature of mammalian genetic hypertension. In one rodent model (the SHR), over-expression of chromogranin A is largely controlled by a single genetic locus, but the chromogranin A locus itself is not directly linked to determination of the blood pressure elevation of the SHR.
Databáze: MEDLINE