Surfactant-aided, matrix-assisted laser desorption/ionization mass spectrometry of hydrophobic and hydrophilic peptides.

Autor: Breaux GA; Department of Chemistry, Louisiana State University, Baton Rouge 70803, USA., Green-Church KB, France A, Limbach PA
Jazyk: angličtina
Zdroj: Analytical chemistry [Anal Chem] 2000 Mar 15; Vol. 72 (6), pp. 1169-74.
DOI: 10.1021/ac9907282
Abstrakt: The analysis of hydrophobic and hydrophilic peptides in an aqueous medium using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is reported. The key development allowing for simultaneous analysis of both hydrophobic and hydrophilic components of the sample mixture is the use of surfactants to solubilize the hydrophobic components in the MALDI matrix solution. A wide variety of anionic, cationic, zwitterionic, and nonionic surfactants were evaluated for their ability to assist in the generation of an abundant pseudomolecular ion from a model hydrophobic peptide ([tert-butoxycarbonyl]Glu[gamma-O-benzyl]-Ala-Leu-Ala[O-phenacyl ester]). The results indicate that the most successful surfactant among those studied for analyzing the model hydrophobic peptide is sodium dodecyl sulfate (SDS). SDS exhibited no interfering surfactant background ions, little to no loss of the acid-labile protecting groups from the model hydrophobic peptide, and an abundant pseudomolecular ion of the analyte. In addition, the use of surfactants is shown to be compatible with hydrophilic peptides as well. Mixtures of hydrophobic and hydrophilic peptides were characterized using surfactant-aided (SA) MALDI-MS, and it is demonstrated that all components are detectable once the surfactant is included in the sample solution. We conclude that the key benefit of using SA-MALDI-MS is its ability to simultaneously analyze hydrophobic and hydrophilic peptides from a single sample mixture, including synthetic peptides containing acid- and base-labile protecting groups.
Databáze: MEDLINE