Molecular and functional characterization of protein 4.1B, a novel member of the protein 4.1 family with high level, focal expression in brain.

Autor: Parra M; Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA., Gascard P, Walensky LD, Gimm JA, Blackshaw S, Chan N, Takakuwa Y, Berger T, Lee G, Chasis JA, Snyder SH, Mohandas N, Conboy JG
Jazyk: angličtina
Zdroj: The Journal of biological chemistry [J Biol Chem] 2000 Feb 04; Vol. 275 (5), pp. 3247-55.
DOI: 10.1074/jbc.275.5.3247
Abstrakt: Brain-enriched isoforms of skeletal proteins in the spectrin and ankyrin gene families have been described. Here we characterize protein 4.1B, a novel homolog of erythrocyte protein 4.1R that is encoded by a distinct gene. In situ hybridization revealed high level, focal expression of 4.1B mRNA in select neuronal populations within the mouse brain, including Purkinje cells of the cerebellum, pyramidal cells in hippocampal regions CA1-3, thalamic nuclei, and olfactory bulb. Expression was also detected in adrenal gland, kidney, testis, and heart. 4.1B protein exhibits high homology to the membrane binding, spectrin-actin binding, and C-terminal domains of 4.1R, including motifs for interaction with NuMA and FKBP13. cDNA characterization and Western blot analysis revealed multiple spliceoforms of protein 4.1B, with functionally relevant heterogeneity in the spectrin-actin and NuMA binding domains. Regulated alternative splicing events led to expression of unique 4. 1B isoforms in brain and muscle; only the latter possessed a functional spectrin-actin binding domain. By immunofluorescence, 4. 1B was localized specifically at the plasma membrane in regions of cell-cell contact. Together these results indicate that 4.1B transcription is selectively regulated among neuronal populations and that alternative splicing regulates expression of 4.1B isoforms possessing critical functional domains typical of other protein 4.1 family members.
Databáze: MEDLINE