Development and characterization of novel potent and stable inhibitors of endopeptidase EC 3.4.24.15.

Autor: Shrimpton CN; Baker Medical Research Institute, PO Box 6492, St. Kilda Road Central, Melbourne, Victoria, Australia 8008., Abbenante G, Lew RA, Smith I
Jazyk: angličtina
Zdroj: The Biochemical journal [Biochem J] 2000 Jan 15; Vol. 345 Pt 2, pp. 351-6.
Abstrakt: Solid-phase synthesis was used to prepare a series of modifications to the selective and potent inhibitor of endopeptidase EC 3.4.24.15 (EP24.15), N-[1(R, S)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate (cFP), which is degraded at the Ala-Tyr bond, thus severely limiting its utility in vivo. Reducing the amide bond between the Ala and Tyr decreased the potency of the inhibitor to 1/1000. However, the replacement of the second alanine residue immediately adjacent to the tyrosine with alpha-aminoisobutyric acid gave a compound (JA-2) that was equipotent with cFP, with a K(i) of 23 nM. Like cFP, JA-2 inhibited the closely related endopeptidase EC 3.4.24.16 1/20 to 1/30 as potently as it did EP24.15, and did not inhibit the other thermolysin-like endopeptidases angiotensin-converting enzyme, endothelin-converting enzyme and neutral endopeptidase. The biological stability of JA-2 was investigated by incubation with a number of membrane and soluble sheep tissue extracts. In contrast with cFP, JA-2 remained intact after 48 h of incubation with all tissues examined. Further modifications to the JA-2 compound failed to improve the potency of this inhibitor. Hence JA-2 is a potent, EP24.15-preferential and biologically stable inhibitor, therefore providing a valuable tool for further assessing the biological functions of EP24.15.
Databáze: MEDLINE