Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice.

Autor: Oldenbeuving AW; Department of Anatomy, Erasmus University, 3000 DR Rotterdam, The Netherlands., Eisenman LM, De Zeeuw CI, Ruigrok TJ
Jazyk: angličtina
Zdroj: The European journal of neuroscience [Eur J Neurosci] 1999 Nov; Vol. 11 (11), pp. 3809-22.
DOI: 10.1046/j.1460-9568.1999.00796.x
Abstrakt: Earlier behavioural studies have shown that the expression of the immediate-early gene c-fos, as visualized by the immunohistochemical detection of Fos, in the inferior olive (IO) correlated closely with expression in related areas of the cerebellar nuclei. It has been speculated that the expression of c-fos within the cerebellar nuclei may be induced by enhanced spiking activity of the immunopositive neurons in the inferior olive. Two potential mechanisms may play a role in this process: a direct induction by way of the collaterals of the olivary climbing fibres to the cerebellar nuclei, or indirectly, by climbing fibre activity-induced depression of mossy fibre-parallel fibre-induced simple spike frequency of the Purkinje cells resulting in a subsequent disinhibition of the related parts of the cerebellar nuclei. In an attempt to distinguish between these possible mechanisms, we analysed Fos immunoreactivity in the olivocerebellar system of wild-type mice and in the mutant mouse Lurcher which lacks Purkinje cells. The tremorgenic agent harmaline, which is known to induce enhanced and rhythmic firing of olivary neurons was given intraperitoneally to anaesthetized mice of both genotypes. Harmaline application coincides with the induction of Fos-immunoreactive neurons in most areas of the IO in both wild-type and Lurcher mice. Both types of mice also showed enhanced expression in the larger neurons of the cerebellar nuclei. However, in the smaller, GABAergic nucleo-olivary neurons, increased c-fos expression was only observed in the wild-type mice. We conclude that: (i) increased olivary activity indeed may result in increased c-Fos expression in related areas of the cerebellar nuclei; (ii) because the indirect mode of induction is not operative in Lurcher mice, the olivary collateral innervation of the cerebellar nuclei is sufficient for c-fos induction in the larger nucleobulbar neurons in Lurcher and potentially also in wild-type mice; however (iii) for the nucleo-olivary cells an intact cerebellar cortical input is necessary to evoke increased expression of c-fos following harmaline application.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje