Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel.

Autor: Moore RC; Institute for Neurodegenerative Diseases, Departments of Neurology., Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, Karunaratne A, Pasternak SH, Chishti MA, Liang Y, Mastrangelo P, Wang K, Smit AF, Katamine S, Carlson GA, Cohen FE, Prusiner SB, Melton DW, Tremblay P, Hood LE, Westaway D
Jazyk: angličtina
Zdroj: Journal of molecular biology [J Mol Biol] 1999 Oct 01; Vol. 292 (4), pp. 797-817.
DOI: 10.1006/jmbi.1999.3108
Abstrakt: The novel locus Prnd is 16 kb downstream of the mouse prion protein (PrP) gene Prnp and encodes a 179 residue PrP-like protein designated doppel (Dpl). Prnd generates major transcripts of 1.7 and 2.7 kb as well as some unusual chimeric transcripts generated by intergenic splicing with Prnp. Like PrP, Dpl mRNA is expressed during embryogenesis but, in contrast to PrP, it is expressed minimally in the CNS. Unexpectedly, Dpl is upregulated in the CNS of two PrP-deficient (Prnp(0/0)) lines of mice, both of which develop late-onset ataxia, suggesting that Dpl may provoke neurodegeneration. Dpl is the first PrP-like protein to be described in mammals, and since Dpl seems to cause neurodegeneration similar to PrP, the linked expression of the Prnp and Prnd genes may play a previously unrecognized role in the pathogenesis of prion diseases or other illnesses.
Databáze: MEDLINE