Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin and comparison with pravastatin.

Autor: Jacobsen W; Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, California, USA., Kirchner G, Hallensleben K, Mancinelli L, Deters M, Hackbarth I, Baner K, Benet LZ, Sewing KF, Christians U
Jazyk: angličtina
Zdroj: The Journal of pharmacology and experimental therapeutics [J Pharmacol Exp Ther] 1999 Oct; Vol. 291 (1), pp. 131-9.
Abstrakt: We compared the intestinal metabolism of the structurally related 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors lovastatin and pravastatin in vitro. Human small intestinal microsomes metabolized lovastatin to its major metabolites 6'beta-hydroxy (apparent K(m) = 11.2 +/- 3.3 microM) and 6'-exomethylene (apparent K(m) = 22.7 +/- 9.0 microM) lovastatin. The apparent K(m) values were similar for lovastatin metabolism by human liver microsomes. 6'beta-Hydroxylovastatin formation by pig small intestinal microsomes was inhibited with the following inhibition K(i) values: cyclosporine, 3.3 +/- 1.2 microM; ketoconazole, 0.4 +/- 0.1 microM; and troleandomycin, 0.8 +/- 0.9 microM. K(i) values for 6'-exomethylene lovastatin were similar. Incubation of pravastatin with human small intestinal microsomes resulted in the generation of 3'alpha,5'beta, 6'beta-trihydroxypravastatin (apparent K(m) = 4560 +/- 1410 microM) and hydroxypravastatin (apparent K(m) = 5290 +/- 1740 microM). In addition, as in the liver, pravastatin was metabolized in the small intestine by sulfation and subsequent degradation to its main metabolite 3'alpha-iso-pravastatin. It was concluded that lovastatin is metabolized by cytochrome P-450 3A enzymes in the small intestine. Compared with lovastatin, the cytochrome P-450-dependent intestinal intrinsic clearance of pravastatin was >5000-fold lower and cannot be expected to significantly affect its oral bioavailability or to be a significant site of drug interactions.
Databáze: MEDLINE