Autor: |
Liu G; Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA., McDaniel TK, Falkow S, Karlin S |
Jazyk: |
angličtina |
Zdroj: |
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 1999 Jun 08; Vol. 96 (12), pp. 7011-6. |
DOI: |
10.1073/pnas.96.12.7011 |
Abstrakt: |
The severity of Helicobacter pylori-related disease is correlated with a pathogenicity island (the Cag region of about 26 genes) whose presence is associated with the up-regulation of an IL-8 cytokine inflammatory response in gastric epithelial cells. Statistical analysis of the Cag gene sequences calculated from the complete genome of strain 26695 revealed several unusual features. The Cag7 sequence (1,927 aa) has two repeat regions. Repeat region I runs 317 aa in a form of AAA proximal to the protein N terminal; repeat region II extends 907 aa in the middle of the protein sequence consisting of 74 contiguous segments composed from selections among six consensus sequences and includes 58 regularly distributed cysteine residues with consecutive cysteines mostly 12, 18, or 24 aa apart. This "regular" cysteine arrangement may provide a scaffolding of linker elements stabilized by disulfide bridges. When Cag7 homologues from different strains are compared, differences were found almost exclusively in the repeat regions, resulting from deletion and/or insertion of repeating units. These observations suggest that the anomalous repetitive structure of the sequence plays an important role in the conformation of Cag7 gene product and potentially in the function of the pathogenicity island. Other facets of the Cag7 sequence show significant charge clusters, high multiplet count, and extremes of amino acid usage. |
Databáze: |
MEDLINE |
Externí odkaz: |
|