The clean elements of the ring $\mathcal R(L)$
Autor: | Estaji, Ali Akbar |
---|---|
Další autoři: | |
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: We characterize clean elements of $\mathcal R(L)$ and show that $\alpha\in\mathcal{R}(L)$ is clean if and only if there exists a clopen sublocale $U$ in $L$ such that $\frak{c}_L({\rm coz} (\alpha- 1)) \subseteq U \subseteq\frak{o}_L( {\rm coz} (\alpha))$. Also, we prove that $\mathcal R(L)$ is clean if and only if $\mathcal R(L)$ has a clean prime ideal. Then, according to the results about $\mathcal R(L),$ we immediately get results about $\mathcal C_c(L). |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |