Linear preserver of $n\times1$ Ferrers vectors.
Autor: | Fazlpar, Leila |
---|---|
Další autoři: | |
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb{Z}_2$. Also, we have achieved the number of these linear maps in each case. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |