Linear preserver of $n\times1$ Ferrers vectors.

Autor: Fazlpar, Leila
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
Abstrakt: Abstract: Let $A=[a_{ij}]_{m\times n}$ be an $m\times n$ matrix of zeros and ones. The matrix $A$ is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1,1)$-entry. We characterize all linear maps perserving the set of $n\times1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring $\mathbb{Z}_2$. Also, we have achieved the number of these linear maps in each case.
Databáze: Katalog Knihovny AV ČR