Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$
Autor: | Feng, Ya-Fang |
---|---|
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\leq x, y, z \leq H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |