On an additive problem of unlike powers in short intervals.
Autor: | Zhang, Qingqing |
---|---|
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
Abstrakt: | Abstract: We prove that almost all positive even integers $n$ can be represented as $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}-\tfrac 14 N|\leq N^{1-1/54+\varepsilon }$ for $2\leq k\leq 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_{1}+p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}- \tfrac 15 N|\leq N^{1-1/54+\varepsilon }$ for $1\leq k\leq 5$. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |