On an additive problem of unlike powers in short intervals.

Autor: Zhang, Qingqing
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
Abstrakt: Abstract: We prove that almost all positive even integers $n$ can be represented as $p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}-\tfrac 14 N|\leq N^{1-1/54+\varepsilon }$ for $2\leq k\leq 5$. As a consequence, we show that each sufficiently large odd integer $N$ can be written as $p_{1}+p_{2}^{2}+p_{3}^{3}+p_{4}^{4}+p_{5}^{5}$ with $|p_{k}^{k}- \tfrac 15 N|\leq N^{1-1/54+\varepsilon }$ for $1\leq k\leq 5$.
Databáze: Katalog Knihovny AV ČR