On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$

Autor: Šeda, Valter, 1931-
Další autoři:
Pekár, Ján, 1952-
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0373-6725
Abstrakt: Abstract: In the paper it is shown that each solution $u(r,\alpha)$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty$, and an asymptotic formula for the nontrivial solution $u(r,\alpha)$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha})$, $u(r,\hat{\alpha})$.
Databáze: Katalog Knihovny AV ČR