On some properties of the solution of the differential equation $u''+\frac{2u'}{r}=u-u^3$
Autor: | Šeda, Valter, 1931- |
---|---|
Další autoři: |
Pekár, Ján, 1952-
|
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
ISSN: | 0373-6725 |
Abstrakt: | Abstract: In the paper it is shown that each solution $u(r,\alpha)$ ot the initial value problem (2), (3) has a finite limit for $r\rightarrow \infty$, and an asymptotic formula for the nontrivial solution $u(r,\alpha)$ tending to 0 is given. Further, the existence of such a solutions is established by examining the number of zeros of two different solutions $u(r,\bar{\alpha})$, $u(r,\hat{\alpha})$. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |