Monomial ideals with tiny squares and Freiman ideals.

Autor: Al-Ayyoub, Ibrahim
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0011-4642
Abstrakt: Abstract: We provide a construction of monomial ideals in $R=K[x,y]$ such that $\mu(I^2)< \mu(I)$, where $\mu$ denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring $R$, we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on $\mu(I^k)$ that generalize some results of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018), J. Herzog, M. Mohammadi Saem, N. Zamani (2019), and J. Herzog, A. Asloob Qureshi, M. Mohammadi Saem (2019).
Databáze: Katalog Knihovny AV ČR