Abstrakt: |
Abstract: a_1We explored patterns of plant species richness and composition along an elevational gradient (4,985-5,685 m a.s.l.) on Buddha Mountain, 100 km northwest of Lhasa, Tibet. We recorded the presence of plants and lichens in 1-m² quadrats separated by 25-m elevational intervals (174 quadrats in 29 elevational bands) along a vertical transect with a SE aspect. We recorded 143 total species, including 107 angiosperms, 2 gymnosperms, 27 lichens, and 7 mosses. We measured stone cover in each quadrat, and soil pH, C, N and C/N ratio from two randomly located samples collected from 10-cm depth within each band. C, N and C/N decreased with elevation, stoniness increased and soil pH did not change with altitude. We employed detrended correspondence analysis (DCA), canonical correspondence analysis (CCA) and generalized linear models (GLMs) to assess the relationships of species richness and species composition to the environment. The first two axes of the CCA biplot explained 87.7% of total variation in the species-environment relationship, and 27.7% of total variance of species data. The first CCA axis is associated with elevation, while the second axis is related to soil pH and stone cover. We also compared patterns in species richness against expectations from species pools interpolated from the literature. Total species richness was relatively constant between 4,985 and 5,400 m a.s.l. and declined continuously above 5,400 m a.s.l. Similar declining patterns were observed for forbs and graminoids. Cushion plants and lichens abundance exhibited a unimodal relationship with altitude while shrubs declined monotonically. Except for lichens, models derived from our observations and the literature were quite similar in shape. |