Abstrakt: |
Abstract: This paper studies the compression of a $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb{T}^n)$ for integers $k\ge2$ and $n\ge1$. It also provides a characterization of the compression of a $k$th-order slant Toeplitz operator on $H^2(\mathbb{T}^n)$. Finally, the paper highlights certain properties, namely isometry, eigenvalues, eigenvectors, spectrum and spectral radius of the compression of $k$th-order slant Toeplitz operator on the Hardy space $H^2(\mathbb{T}^n)$ of $n$-dimensional torus $\mathbb{T}^n$. |