Abstrakt: |
Abstract: Solvability of the rational contact with limited interpenetration of different kind of viscolastic plates is proved. The biharmonic plates, von Kármán plates, Reissner-Mindlin plates, and full von Kármán systems are treated. The viscoelasticity can have the classical ("short memory") form or the form of a certain singular memory. For all models some convergence of the solutions to the solutions of the Signorini contact is proved provided the thickness of the interpenetration tends to zero. |