Joint distribution for the Selmer ranks of the congruent number curves.
Autor: | Vrećica, Ilija S. |
---|---|
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
ISSN: | 0011-4642 |
Abstrakt: | Abstract: We determine the distribution over square-free integers $n$ of the pair $(\dim_{\mathbb{F}_2}{\rm Sel}^\Phi(E_n/\mathbb{Q}),\dim_{\mathbb{F}_2} {\rm Sel}^{\widehat{\Phi}}(E_n'/\mathbb{Q}))$, where $E_n$ is a curve in the congruent number curve family, $E_n'\colon y^2=x^3+4n^2x$ is the image of isogeny $\Phi\colon E_n\rightarrow E_n'$, $\Phi(x,y)=(y^2/x^2,y(n^2-x^2)/x^2)$, and $\widehat{\Phi}$ is the isogeny dual to $\Phi$. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |