Hyperbolic inverse mean curvature flow.

Autor: Mao, Jing
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0011-4642
Abstrakt: Abstract: We prove the short-time existence of the hyperbolic inverse (mean) curvature flow (with or without the specified forcing term) under the assumption that the initial compact smooth hypersurface of $\mathbb{R}^{n+1}$ ($n\ge2$) is mean convex and star-shaped. Several interesting examples and some hyperbolic evolution equations for geometric quantities of the evolving hypersurfaces are shown. Besides, under different assumptions for the initial velocity, we can get the expansion and the convergence results of a hyperbolic inverse mean curvature flow in the plane $\mathbb{R}^2$, whose evolving curves move normally.
Databáze: Katalog Knihovny AV ČR