Matlis dual of local cohomology modules.

Autor: Naal, Batoul
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0011-4642
Abstrakt: Abstract: Let $(R,\mathfrak m)$ be a commutative Noetherian local ring, $\mathfrak a$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak a M\neq M$ and ${\rm cd}(\mathfrak a,M) - {\rm grade}(\mathfrak a,M) \leq1$, where ${\rm cd}(\mathfrak a,M)$ is the cohomological dimension of $M$ with respect to $\mathfrak a$ and ${\rm grade}(\mathfrak a,M)$ is the $M$-grade of $\mathfrak a$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak m)$ is the injective hull of the residue field $R/\mathfrak m$. We show that there exists the following long exact sequence $\rightarrow H^{n-2}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \rightarrow H^n_{\mathfrak a}(D(H^n_{\mathfrak a}(M))) \rightarrow D(M) \rightarrow H^{n-1}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \rightarrow H^{n+1}_{\mathfrak a}(D(H^n_{\mathfrak a}(M))) \rightarrow H^n_{\mathfrak a}(D(H^{n-1}_{(x_1, \ldots,x_{n-1})}(M))) \rightarrow H^n_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \rightarrow \ldots$, where $n:={\rm cd}(\mathfrak a,M)$ is a non-negative integer, $x_1, \ldots,x_{n-1}$ is a regular sequence in $\mathfrak a$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak a}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak a$.
Databáze: Katalog Knihovny AV ČR