Note on a conjecture for the sum of signless Laplacian eigenvalues.

Autor: Chen, Xiaodan
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0011-4642
Abstrakt: Abstract: For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal{S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal{S}_k^+(G)\leq e(G)+{k+1 \choose2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in\{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs.
Databáze: Katalog Knihovny AV ČR