On the bounds of Laplacian eigenvalues of k-connected graphs.

Autor: Chen, Xiaodan
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0011-4642
Abstrakt: Abstract: Let µ_{n-1}(G) be the algebraic connectivity, and let µ_{1}(G) be the Laplacian spectral radius of a k-connected graph G with n vertices and m edges. In this paper, we prove that {\mu _{n - 1}}(G) \geqslant \frac{{2n{k^2}}}{{(n(n - 1) - 2m)(n + k - 2) + 2{k^2}}} , with equality if and only if G is the complete graph Kn or Kn − e. Moreover, if G is non-regular, then {\mu _1}(G) < 2\Delta - \frac{{2(n\Delta - 2m){k^2}}}{{2(n\Delta - 2m)({n^2} - 2n + 2k) + n{k^2}}} , where ▵ stands for the maximum degree of G. Remark that in some cases, these two inequalities improve some previously known results.
Databáze: Katalog Knihovny AV ČR