Certain decompositions of matrices over Abelian rings.
Autor: | Ashrafi, Nahid |
---|---|
Další autoři: |
Chen, Huanyin, 1963-
|
Jazyk: | angličtina |
Předmět: | |
Druh dokumentu: | Non-fiction |
ISSN: | 0011-4642 |
Abstrakt: | Abstract: A ring R is (weakly) nil clean provided that every element in R is the sum of a (weak) idempotent and a nilpotent. We characterize nil and weakly nil matrix rings over abelian rings. Let R be abelian, and let n 2 N. We prove that Mn(R) is nil clean if and only if R/J(R) is Boolean and Mn(J(R)) is nil. Furthermore, we prove that R is weakly nil clean if and only if R is periodic; R/J(R) is Z3, B or Z3 B where B is a Boolean ring, and that Mn(R) is weakly nil clean if and only if Mn(R) is nil clean for all n > 2. |
Databáze: | Katalog Knihovny AV ČR |
Externí odkaz: |