New quasi-Newton method for solving systems of nonlinear equations.

Autor: Lukšan, Ondřej
Další autoři:
Jazyk: angličtina
Předmět:
Druh dokumentu: Non-fiction
ISSN: 0862-7940
Abstrakt: Abstract: We propose a new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR or LU decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires O(n²) arithmetic operations per iteration in contrast with the Newton method, which requires O(n³) operations per iteration. Computational experiments confirm the high efficiency of the new method.
Databáze: Katalog Knihovny AV ČR